基于数字孪生的柔性制造系统模糊建模
摘要:
基于数字孪生的模糊决策机制为实现优化流程提供了巨大的机遇,尤其是在大数据和新商业模式超乎想象的柔性生产环境中。技术的发展带来了数据量的不断增长和大数据分析技术的发展。例如,物联网 (IoT)、5G、数字孪生和云计算技术。数字孪生涵盖了在虚拟环境中监控和指导生产过程的过程,以应对日益增长的数据量以及快速准确地响应客户服务的能力。数字孪生能够实时分析生产环境中的内部和外部变化,从而优化生产流程、降低成本并提高运营效率。它支持生产系统环境的持续学习和系统的自我优化。它包括基于数字孪生的集成智能生产模型以及对柔性生产环境中模糊决策方法的评估。
Abstract: The digital twin-based fuzzy decision mechanism provides great opportunities for the realization of the optimization process, especially in the flexible production environment, with big data and new business modes beyond expectations. Developing technology has brought with it the increasing amount of data and the development of big data analysis techniques. We can give Internet of Things (IoT), 5G, digital twin and cloud computing technologies as examples. Digital twin covers the process of monitoring and directing the production processes in the virtual environment in line with the increasing amount of data and the ability to respond quickly and accurately to customer services. The digital twin provides the internal and external changes in the production environment allow instant analysis of data. In this approach, it is aimed to optimize the production process, reduce costs and increase operational efficiency. It provides continuous learning in the production system environment and self-optimization of the system. It includes a digital twin-based integrated smart production model and the evaluation of the fuzzy approach in decision-making in a flexible production environment.
文章引用:郭亮. 基于数字孪生的柔性制造系统模糊建模[J]. 计算机发展与应用, 2023, 1(1): 1-5.
致谢:
基金项目:
参考文献
[1] Li M, Li Z, Huang X, et al. Blockchain-based digital twin sharing platform for reconfigurable socialized manufacturing resource integration. International Journal of Production Economics, 2021, 240: 108223
[2] Jens J, Hunhevicz JJ, Motie M, et al. Digital building twins and blockchain for performance-based (smart) contracts. Automation in Construction, 2022, 133: 103981
[3] Zhou C, Xu J, Miller-Hooks E, et al. Analytics with digital-twinning: A decision support system for maintaining a resilient port. Decision Support Systems, 2021, 143: 113496.
[4] Villalonga A, Negri E, Biscardo G, et al. A decisionmaking framework for dynamic scheduling of cyber-physical production systems based on digital twins. Annual Reviews in Control, 2021, 51: 357–373.
[5] Florea A, Lobov A, Lanz M. Emotions-aware Digital Twins For Manufacturing, Procedia Manufacturing. 30th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2021), 2020: 15-18.
[6] 刘建军, 曹晓燕, 周红, 等. 一种基于数字孪生驱动的工艺质量可追溯性和动态控制方法. 高级工程信息学, 2021(50): 101395.
[7] 范燕, 杨建, 陈建, 等. 柔性制造系统的数字孪生可视化架构, 制造系统杂志, 2021(60): 176-201.
[8] Tao F, Zhang M, Nee AYC.Chapter 7 - Digital Twin-Driven Prognostics and Health Management. Academic Press, 2019: 141-167.