面向数据中心集聚化场景的储能配置及双层调度优化
摘要: 随着“东数西算”工程的推进,数据中心大量布局新能源电源侧。为提升电网调度的灵活性并优化储能系统配置,本文提出了一种面向数据中心集聚化场景的储能配置及双层调度优化方法。首先,模型上层通过最大化储能投资运营商的收益来优化储能的容量和位置,下层基于数据中心约束计算最优潮流得到节点边际电价,并将其反馈给上层以更新储能配置决策。其次,为了提高模型的收敛性,本文提出二分嵌入迭代法以抑制振荡问题。最后,对内蒙古地区IEEE30节点电力系统进行算例分析,仿真结果表明本方法能有效提升电网运行效率、数据中心服务质量以及储能投资的经济性。
Abstract: With the advancement of the "East Data West Computing" Project, data centers are extensively deployed on the renewable energy power supply side. To enhance the flexibility of power grid dispatching and optimize the configuration of energy storage systems, this paper proposes an energy storage configuration and dual-layer scheduling optimization method for the agglomeration scenarios of data centers. Firstly, the upper layer of the model optimizes the capacity and location of energy storage by maximizing the revenue of the energy storage investment operator. The lower layer calculates the optimal power flow based on the constraints of the data center to obtain the nodal marginal price, and feeds it back to the upper layer to update the energy storage configuration decision. Secondly, to improve the convergence of the model, this paper proposes the binary embedding iterative method to suppress oscillation problems. Finally, a case study was conducted on the IEEE 30-node power system in Inner Mongolia. The simulation results show that this method can effectively enhance the operational efficiency of the power grid, the service quality of data centers, and the economic efficiency of energy storage investment.
文章引用:刘嘉丽,黑文斌,赵磊,赵启新,金琨. 面向数据中心集聚化场景的储能配置及双层调度优化[J]. 现代工程与应用, 2025, 3(3): 12-23. DOI: https://doi.org/10.61784/mea2002.
致谢:

基金项目:

参考文献

[1] 马蕴颖. AI时代清洁能源数据中心发展趋势及实践探索. 通信世界, 2025(17): 32-35.

[2] 蒋昌俊. 赋能东数西算战略构筑智能算力网络. 中国科学基金, 2025, 39(02): 193.

[3] 谭力, 于娟. 储能与数据中心融合应用的前景、挑战及建议. 数字经济, 2025(01): 42-44.

[4] 赵石. 大型数据中心供能系统储能设备配置研究. 节能, 2025, 44(07): 80-84.

[5] 李一锦, 王冀波, 张梓豪, 等. 计及需求响应的数据中心和光-储系统协同优化配置方法. 供用电, 2025, 1-11.

[6] 马浩然, 袁至, 王维庆, 等. 考虑数据中心和储能接入的主动配电网经济调度研究. 发电技术, 2025, 46(04): 748-757+634.

[7] Cheng Y H, Zhang N, Zhang B S, et al. Low-Carbon Operation of Multiple Energy Systems Based on Energy-Carbon Integrated Prices. IEEE Transactions on Smart Grid, 2020, 11, 1307-1318.

[8] 李为润, 林永君, 刘卫亮, 等. 含数据中心综合能源系统双层容量优化配置. 电力科学与工程, 2025, 41(05): 68-78.

[9] 吴长元, 杨斐平, 胡高峰, 等. 考虑互动响应的数据中心与新能源配电网双层协同规划方法. 黑龙江电力, 2025, 47(02): 109-117.

[10] 杨诗瑶, 李勇, 杨洪海. 考虑需求响应的数据中心储能配置及调度三层优化. 节能, 2025, 44(07):36-42.

[11] Kasra Shafiei, Saeid Ghassem Zadeh, Mehrdad Tarafdar Hagh. Planning for a network system with renewable resources and battery energy storage, focused on enhancing resilience. Journal of Energy Storage, 2024, 87, 111339.

[12] 王述祯. 基于i-C&CG求解算法的数据中心与储能协同规划. 储能科学与技术, 2025, 14(02): 671-687.

[13] 陈绪昌, 王育飞, 薛花. 基于MDP-ADMM的数据中心储能系统优化运行方法. 储能科学与技术, 2023, 12(06): 1890-1900.

[14] 孙晓杰, 刘昊儒, 余韵滢, 等. 基于多层粒子群算法的数据中心能耗优化调度策略. 电信工程技术与标准化, 2024, 37(S1): 242-246.

[15] Guo Caishan, Luo Fengji, Cai Zexiang, et al. Integrated planning of internet data centers and battery energy storage systems in smart grids. Applied Energy, 2021, 281: 116093.

[16] Mongird K, Viswanathan V V, Balducci P J, et al. Energy storage technology and cost characterization report. Technical Report, PacificNorthwest National Lab. (PNNL), Richland, WA (United States), 2019. DOI: https://doi.org/10.2172/1573487.

[17] Measurement and Instrumentation Data Center (MIDC). Restore original map zoom magnification. Measurement and Instrumentation Data Center (MIDC). 2018. http://midcdmz.nrel.gov.