“蝴蝶声学蒙皮”——降低静音螺旋桨气动噪声的新方法
摘要: 进行了一项关于“蝴蝶声学皮肤”(鳞翅目昆虫鳞片覆盖物的金属版本)对双叶螺旋桨(直径 1200 毫米,翼型截面为 NACA 2415,转速为 1780 rpm,Re ≈ 2 × 105)在低速直通风洞中的声学性能的影响的实验研究。最初通过观察鳞翅目昆虫的多孔鳞片和多孔鳞片覆盖物以及其他研究表明飞行鳞翅目昆虫的翼附器可以抑制噪音而将注意力吸引到这个问题上。蛾覆盖物的特性使这些昆虫能够在夜间抵御蝙蝠的袭击。这些附器非常小(尺寸:30 – 200 μm)并具有各种多孔结构。我讨论了多孔鳞片的多种不同的微观和纳米结构,以及鳞翅目昆虫多孔鳞片覆盖物各种结构之间的许多细节差异。本文仅讨论蝴蝶Papilio nireus、Nieris rapae、Deelias nigrina、雄蝶Callophrys rubi、雄蝶Polyommatus daphnis、蝴蝶Papilio palinurus的多孔鳞片以及菜蛾、大食蛾科蛾类和夜蛾科蛾类的多孔鳞片覆盖。本文简要讨论了鳞翅目昆虫的进化史和鳞翅目昆虫鳞片覆盖的特性,并介绍了降低飞机气动噪声的不同方法。带有中空区域的“蝴蝶声学皮肤”设计模仿了Papilio nireus蝴蝶的覆盖中空翼鳞。带有多孔区域的“蝴蝶声学皮肤”设计模仿了Pieris rapae蝴蝶的覆盖中空翼鳞,并模仿了Delieas nigrina蝴蝶的覆盖中空翼鳞。结果表明,空心壳旋转螺旋桨的总声压级比光滑壳螺旋桨低2 dB以上,而多孔空心壳旋转螺旋桨的总声压级比光滑壳螺旋桨低4 dB以上。研究发现,带有多孔区域的光滑“蝴蝶声学壳”对旋转螺旋桨声学效果的改变表现为吸声、湍流能量耗散以及对产生的噪声的降低。带有空心区域的光滑“蝴蝶声学壳”可以解释与螺旋桨降噪机制相同的原理。
Abstract: An experimental investigation was conducted on the effect ‘butterfly acoustical skin’ (metallic version of the lepidopterans scale coverage) on the acoustic performances of two - bladed propeller (diameter of 1200 mm, airfoil sections of NACA 2415, rotating speed of 1780 rpm, Re ≈ 2 × 105) in a low – speed straight through a wind tunnel. Attention was initially directed to this problem by observation of the porous scales and porous scale coverage of lepidopterans as well as other studies indicating the noise suppression of flying lepidopterans by wing appendages. The property of the moth coverage allows these insects to overcome bat attacks at night. These appendages are very small (size: 30 – 200 μm) and have a various porous structures. I discuss both many different micro – and nanostructures of the porous scales, and many differences in details among various structures of the porous scale coverage of lepidonterans. I consider here only porous scales of butterflies Papilio nireus, Nieris rapae, Deelias nigrina, male Callophrys rubi, male Polyommatus daphnis, butterfly Papilio palinurus as well as porous scale coverage of cabbage moth, moth of Saturniidae family and moth of Noctuoidea family. The evolutionary history of lepidopterans and the properties of lepidopterans scale coverage are briefly discussed as well as different methods of reducing aero acoustic noise of aircrafts. The design of ‘butterfly acoustical skin’ with a hollow region imitates the cover hollow wing scale of the Papilio nireus butterfly. The design of ‘butterfly acoustical skin’ with a porous region imitates the cover hollow wing scale of the Pieris rapae butterfly, and from the cover hollow wing scale ofthe Delieas nigrina butterfly. Results indicate that the total sound pressure level of the rotating propeller with hollow skin is more than 2 dB lower with respect to the one with the smooth skin; and the total sound pressure level of the rotating propeller with the porous hollow skin is more than 4 dB lower with respect to the one with the smooth skin. The modification of acoustical effects on the rotating propeller with smooth ‘butterfly acoustical skin’ with a porous region was found to be to an acoustic absorption and to a dissipation of turbulent energy and to a reducing influence on noise generated. The same principles of the propeller noise reduction mechanism can explain by smooth ‘butterfly acoustical skin’ with a hollow region.
文章引用:王磊. “蝴蝶声学蒙皮”——降低静音螺旋桨气动噪声的新方法[J]. 现代工程与应用, 2023, 1(1): 1-6.
致谢:
基金项目:
参考文献

[1] Benyus J M. Biomimicry: Innovation Inspired by Nature. New York: William Morrow, 1997: 320.

[2] Mascha E U. Zeitschrift fur wissenschaftliche Zoologie. 1903, 77: 606-551.

[3] Sarradj E A. Fast Signal Subspace Approach for the Determination of Absolute Levels from Phased Microphone Array Measurements. Journal of Sound and Vibration, 2010, 329: 1553-1569.

[4] Graham R R. The Silent Flight of Owls. Journal of the Royal Aeronautical Society, 1934, 286: 837-843.

[5] Howe M. Aerodynamic noise of a serrated trailing edge. Journal of Fluids and Structures, 1991, 5: 33-45.